organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rajnikant,^a* Dinesh,^a Madhukar Baburao Deshmukh,^b Sunil Jadhav^b and Pryinka Kanwal^a

^aCondensed Matter Physics Group, Department of Physics, University of Jammu, Jammu Tawi 180 006, India, and ^bDepartment of Chemistry, Sivaji University Kolhapur, Kolhapur 416 004, Maharastra, India

Correspondence e-mail: rkantverma@rediffmail.com

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.002 Å R factor = 0.044 wR factor = 0.112 Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,3-Diphenylquinoxaline

In the title compound, $C_{20}H_{14}N_2$, the presence of adjacent phenyl rings causes an out-of-plane twist in the quinoxaline system of approximately 12° .

Received 26 April 2006 Accepted 12 May 2006

Comment

Compounds containing a quinoxaline group are of considerable interest due to the potential use of their metal complexes as molecular devices and DNA probes (Holmlin & Barton, 1995; Balzani, Campagna *et al.*, 1998; Balzani, Gomez-Loez & Stoddart, 1998; Du & Zhao, 2003).

In (I), the quinoxaline unit makes a dihedral angle of $37.1 (1)^{\circ}$ with the C11–C16 phenyl ring and $53.3 (1)^{\circ}$ with the C17–C22 phenyl ring. The presence of the two adjacent phenyl rings causes an out-of-plane twist in the quinoxaline system $[C17-C2-C3-C11 = 12.0 (2)^{\circ}]$.

Experimental

Benzil (0.50 mg, 2,38 mmol), 1,2-diaminobenzene (0.26 mg, 2.40 mmol), molecular sieves (1 g) and manganese oxide (0.10 mg) as a catalyst were heated in a glass vial using domestic microwave oven. After 1 min the vial was cooled to room temperature and the solution was filtered. The product was recrystallized from ethanol to give (I) (yield 0.570 mg, 76.49%).

Z = 4

 $D_x = 1.268 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Prism, light yellow

 $0.5 \times 0.45 \times 0.3$ mm

T = 100 (2) K

Crystal data

 $C_{20}H_{14}N_2$ $M_r = 282.33$ Monoclinic, $P2_1/n$ a = 6.0306 (2) Å b = 10.9269 (5) Å c = 22.5309 (8) Å $\beta = 95.005$ (3)° V = 1479.03 (10) Å³

© 2006 International Union of Crystallography All rights reserved

Data collection

Oxford Diffraction CrysAlisCCD diffractometer ω -2 θ scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{min} = 0.93, T_{max} = 0.98$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.112$ S = 1.133413 reflections 200 parameters H-atom parameters constrained 16180 measured reflections 3413 independent reflections 2773 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$ $\theta_{\text{max}} = 27.6^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_{\rm o}^2) + (0.0404P)^2 \\ &+ 0.715P] \\ &where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ SHELXL97} \\ {\rm Extinction \ coefficient: \ 0.0092 \ (16)} \end{split}$$

Table 1

Selected geometric parameters (Å, $^{\circ}$).

N1-C2	1.3228 (18)	C3-N4	1.3213 (19)
N1-C6	1.3678 (19)	N4-C5	1.3683 (19)
C3-C2-C17	123.34 (13)	C2-C3-C11	122.99 (12)

All H atoms were positioned geometrically (C-H = 0.95 Å) refined as riding on their parent atoms, with U_{iso} (H)= 1.2 U_{eq} (parent).

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2003); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *PARST95* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The corresponding author (Rajnikant) is thankful to the Indian Council of Medical Research, Government of India, for

Figure 1

The molecular structure, with displacement ellipsoids drawn at the 50% probability level.

funding under project No. 58/25/03-BMS (dated 21 March 2006).

References

- Balzani, V., Campagna, S., Denti, G., Juris, A., Serroni, S. & Venturi, M. (1998). Acc. Chem. Res. **31**, 26–34.
- Balzani, V., Gomez-Loez, M. & Stoddart, J. F. (1998). Acc. Chem. Res. 31, 405–414.
- Du, M. & Zhao, X.-J. (2003). Acta Cryst. C59, 0403-0405.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Holmlin, R. E. & Barton, J. K. (1995). Inorg. Chem. 34, 7-8.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.170. Oxford Diffraction, Wrocław, Poland.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.